and $j = \sqrt{-1}$. The lower limit is 0 rather than $-\infty$ in this case because **Z** represents power and therefore is non-negative.

Assuming the $\{z_j\}$ are independent and identically-distributed (i.i.d.), (A-2) and (A-9) yield:

$$\Phi_{\mathbf{Z}_{K}}(\omega) \mid \mathbf{J} = E\left[\exp\left[j\omega\sum_{j=1}^{\mathbf{J}}\mathbf{z}_{j}\right]\right] = \left[E\left[e^{j\omega\mathbf{z}_{j}}\right]\right]^{\mathbf{J}} = \left[\Phi_{\mathbf{z}_{j}}(\omega)\right]^{\mathbf{J}}.$$
 (A-10)

Taking the expectation over J using (A-1) gives:

$$\Phi_{\mathbf{Z}_{K}}(\omega) = \sum_{n=0}^{\infty} \frac{e^{-K}K^{n}}{n!} \left[\Phi_{\mathbf{z}_{j}}(\omega) \right]^{n} = \exp \left\{ K \left[\Phi_{\mathbf{z}_{j}}(\omega) - 1 \right] \right\}. \tag{A-11}$$

Thus, **Z** has a compound Poisson distribution.* Letting $\nu = 2/\gamma$, (A-4) gives the characteristic function of z_i as:

$$\Phi_{\mathbf{z}_{j}}(\omega) = \int_{0}^{\infty} f_{\mathbf{z}_{j}}(z)e^{j\omega z}dz = \frac{2}{\gamma K} \int_{K^{-\gamma/2}}^{\infty} z^{-1-\nu} e^{j\omega z}dz.$$
 (A-12)

The "second characteristic function" of \mathbf{Z}_K is defined as the natural logarithm of the characteristic function. † Hence,

^{*} See William Feller, An Introduction to Probability Theory and Its Applications, second ed., vol. II, New York: Wiley, 1971.

[†] See A. Papoulis, *Probability, Random Variables, and Stochastic Processes*. New York: McGraw-Hill, 1965.

$$\Psi_{\mathbf{Z}_{K}}(\omega) \triangleq \ln \Phi_{\mathbf{Z}_{K}}(\omega) = K \left[\Phi_{\mathbf{Z}_{K}}(\omega) - 1 \right] = \frac{2}{\gamma} \int_{K^{-\gamma/2}}^{\infty} z^{-1-\nu} e^{j\omega z} dz - K$$
 (A-13)

Integrating by parts gives and recalling that $\mathbf{Z} = \lim_{K \to \infty} \mathbf{Z}_K$ gives:*

$$\Psi_{\mathbf{Z}}(\omega) = \lim_{K \to \infty} \Psi_{\mathbf{Z}_{K}}(\omega) = j\omega \int_{0}^{\infty} z^{-\nu} e^{j\omega z} dz$$

$$= -|\omega|^{\nu} \Gamma(1-\nu) e^{-j\pi\nu/2}, \quad \omega \ge 0$$

$$= -|\omega|^{\nu} \Gamma(1-\nu) e^{j\pi\nu/2}, \quad \omega < 0, \quad (A-14)$$

where $\Gamma(\cdot)$ is the Gamma function.

See also Tables of Integral Transforms, A. Erdelyi, et al, vol. 1, New York: McGraw-Hill, 1954, p. 10 §1.3, #1, and p. 68 §2.3 #1.

[†] See Abramowitz and Stegun, op. cit., chapter 6.

C. The PDF and CDF of the Aggregate Interference

The pdf of Z is given by the Fourier inversion formula:

$$f_{\mathbf{Z}}(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \Phi_{\mathbf{Z}}(\omega) e^{-j\omega z} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{\Psi(\omega)} e^{-j\omega z} d\omega$$
$$= \frac{1}{2\pi} \sum_{k=0}^{\infty} \int_{-\infty}^{\infty} \frac{[\Psi(\omega)]^k}{k!} e^{-j\omega z} d\omega. \tag{A-15}$$

Letting $x \triangleq -\Gamma(1-\nu)e^{-j\pi\nu/2} = \Gamma(1-\nu)e^{j\pi(1-\nu/2)}$, $\Psi_{\mathbf{Z}}(\omega) = \omega^{\nu}x$ for $\omega \ge 0$ and $\Psi_{\mathbf{Z}} = -\omega^{\nu}x^*$ for $\omega < 0$ (where x^* denotes the complex conjugate of x), and (A-15) becomes:

$$f_{\mathbf{Z}}(z) = \frac{1}{2\pi} \sum_{k=0}^{\infty} \frac{1}{k!} \int_{0}^{\infty} \left[(\omega^{\nu} x)^{k} e^{-j\omega z} + (\omega^{\nu} x^{*})^{k} e^{j\omega z} \right] d\omega.$$
 (A-16)

The integrals $\int\limits_0^\infty \omega^{k\nu} e^{-j\omega z} d\omega$ and $\int\limits_0^\infty \omega^{k\nu} e^{j\omega z} d\omega$ can be evaluated using a form of Euler's integral formula for the Gamma function*

$$\Gamma(y) = \xi^{y} \int_{0}^{\infty} \omega^{y-1} e^{-\omega \xi} d\omega$$
, $\text{Re}\{y\} > 0$, $\text{Re}\{\xi\} > 0$, (A-17)

^{*} Abramowitz and Stegun, op. cit., p. 255.

where $Re\{\cdot\}$ denotes the real part of the complex argument and the condition on ξ is necessary to assure convergence of the integral.

Letting $\xi = z - j\varepsilon$, where z and ε are real and positive, (A-17) gives:

$$\int_{0}^{\infty} \omega^{k\nu} e^{-j\omega z} d\omega = \lim_{\varepsilon \to 0} \int_{0}^{\infty} \omega^{k\nu} e^{-j\omega\xi} d\omega = \lim_{\varepsilon \to 0} \frac{\Gamma(k\nu+1)}{(j\varepsilon)^{k\nu+1}}$$

$$= \frac{\Gamma(k\nu+1)}{(jz)^{k\nu+1}} = \frac{\Gamma(k\nu+1)}{z^{k\nu+1} e^{-j\pi(k\nu+1)/2}}, \quad z > 0, \quad (A-18a)$$

and

$$\int_{0}^{\infty} \omega^{k\nu} e^{j\omega z} d\omega = \lim_{\varepsilon \to 0} \int_{0}^{\infty} \omega^{k\nu} e^{-j\omega\xi^*} d\omega = \lim_{\varepsilon \to 0} \frac{\Gamma(k\nu + 1)}{(j\xi^*)^{k\nu + 1}}$$

$$= \frac{\Gamma(k\nu + 1)}{(-jz)^{k\nu + 1}} = \frac{\Gamma(k\nu + 1)}{z^{k\nu + 1} e^{j\pi(k\nu + 1)/2}}, \quad z > 0, \qquad (A-18b)$$

Eq. (A-16) then becomes:

$$f_{\mathbf{Z}}(z) = \frac{1}{2\pi} \sum_{k=0}^{\infty} \frac{\Gamma(k\nu+1)}{k! z^{k\nu+1}} \left[x^k e^{-j\pi(k\nu+1)/2} + (x^*)^k e^{j\pi(k\nu+1)/2} \right]$$

$$= \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{\Gamma(k\nu+1) [\Gamma(1-\nu)]^k}{k! z^{k\nu+1}} \cos \left[k\pi(1-\nu/2) - \pi(k\nu+1)/2 \right]$$

$$= \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{\Gamma(k\nu+1) [\Gamma(1-\nu)]^k}{k! z^{k\nu+1}} \sin k\pi(1-\nu), \quad z > 0. \tag{A-19}$$

The argument of the sum vanishes for k = 0, and (A-19) can be written as:*

$$f_{\mathbf{Z}}(z) = \frac{1}{\pi z} \sum_{k=1}^{\infty} \frac{\Gamma(k\nu+1)}{k!} \left[\frac{\Gamma(1-\nu)}{z^{\nu}} \right]^k \sin k\pi (1-\nu), \quad z > 0.$$
 (A-20)

The CDF is then:

$$F_{\mathbf{Z}}(z) = 1 - \int_{z}^{\infty} f_{\mathbf{Z}}(\xi) d\xi = 1 - \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\Gamma(k\nu)}{k!} \left[\frac{\Gamma(1-\nu)}{z^{\nu}} \right]^{k} \sin k\pi (1-\nu), z > 0. \text{ (A-21)}$$

Note that for z >> 1, the first term in the series dominates. Since $\Gamma(\nu) \Gamma(1-\nu) = \pi \csc \pi (1-\nu)^{\dagger} F_{\mathbf{Z}}(z) \simeq 1-z^{-\nu}$ for z >> 1.

D. Closed-Form Expressions for Fourth-Power Propagation

For the special case of $\gamma = 4$ ($\nu = 1/2$), (A-20) and (A-21) can be reduced to closed form.[†] Since $\sin k\pi/2$ vanishes for even values of k, and $\Gamma(1/2) = \sqrt{\pi}$, (A-20) becomes:

$$f_{\mathbf{Z}}(z) = \frac{1}{\pi z^{3/2}} \sum_{k=0}^{\infty} \frac{\Gamma(k+3/2)\pi^{k+1/2}}{(2k+1)!z^k} (-1)^k, \quad \gamma = 4, \quad z > 0.$$
 (A-22)

Expressions equivalent to (A-20) and (A-21) are given by E. S. Sousa and J. A. Silvester in "Optimum Transmission Ranges in a Direct-Sequence Spread-Spectrum Multihop Packet Radio Network," *IEEE Journal on Selected Areas in Communications*, vol. 8, no. 5, June 1990, pp. 762-771. However, the expression given in that paper for the CDF is incorrect and actually represents the complementary distribution.

[†] Abramowitz and Stegun, op. cit., p. 256, 6.1.17.

[†] This also is noted by Sousa and Silvester (op. cit.).

With the identity:*

$$\Gamma[2(k+1)] = \frac{\Gamma(k+1)\Gamma(k+3/2)z^{2k+3/2}}{\sqrt{2\pi}},$$
 (A-23)

and the fact that $\Gamma[2(k+1)] = \Gamma(2k+2) = (2k+1)!$ (A-23) yields:

$$\frac{\Gamma(k+3/2)}{(2k+1)!} = \frac{\sqrt{2\pi}}{k! \, 2^{2k+3/2}} = \frac{\sqrt{\pi}}{2 \cdot k! \cdot 4^k} \,, \tag{A-24}$$

and (A-22) is seen to be:

$$f_{\mathbf{Z}}(z) = \frac{1}{2z^{-3/2}} \sum_{k=0}^{\infty} \frac{(-\pi/4z)^k}{k!}$$
$$= \frac{1}{2} z^{-3/2} e^{-\pi/4z} , \quad \gamma = 4.$$
 (A-25)

In a similar manner, (A-21) reduces for $\gamma = 4$ to:

$$F_{\mathbf{Z}}(z) = 1 - \frac{1}{\pi} \sum_{k=0}^{\infty} \frac{\Gamma(k+1/2)}{(2k+1)!} \frac{\pi^{k+1/2}}{z^{k+1/2}} (-1)^k, \quad \gamma = 4, \quad z > 0.$$
 (A-26)

With the identity:

^{*} Abramowitz and Stegun, op. cit., p. 256, 6.1.18.

[†] *Id.*

$$\Gamma(2k) = \frac{\Gamma(k)\Gamma(k+1/2)2^{2k-1/2}}{\sqrt{2\pi}},$$
 (A-27)

and with $(2k + 1)! = (2k - 1)! \cdot (2k + 1) \cdot 2k$, and $\Gamma(2k) = (2K - 1)!$,

$$\frac{\Gamma(k+1/2)}{(2k+1)!} = \frac{2\sqrt{\pi}}{k!(2k+1)2^{2k+1}}.$$
 (A-28)

Substituting (A-28) into (A-26) yields:

$$F_{\mathbf{Z}}(z) = 1 - \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{\pi^{k+1/2}}{k! (2k+1) z^{k+1/2}} (-1)^k$$

$$= 1 - \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{\left(\sqrt{\pi}/2\sqrt{z}\right)^{2k+1}}{k! (2k+1)} (-1)^k$$

$$= \operatorname{erfc}\left(\frac{\sqrt{\pi}}{2\sqrt{z}}\right), \quad \gamma = 4, \qquad (A-29)$$

where erfc(·) is the complementary error function* defined as

$$\operatorname{erfc}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-\xi^{2}} d\xi = 1 - \operatorname{erf}(x), \qquad (A-30a)$$

^{*} Abramowitz and Stegun, op. cit., chapter 7.

and erf(x) is the error function

$$\operatorname{erf}(x) \triangleq \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-\xi^{2}} d\xi = \frac{2}{\sqrt{\pi}} \sum_{k=0}^{\infty} \frac{x^{2k+1} (-1)^{k}}{k! (2k+1)}.$$
 (A-30b)

E. Expressions for the Blocking Probability

From (A-8) and (A-21), the blocking probability is:

$$P_b(\alpha) = \frac{1}{\pi} \sum_{k=1}^{\infty} \frac{\Gamma(2k/\gamma)}{k!} \left[\alpha \Gamma(1-2/\gamma) \right]^k \sin k\pi (1-2/\gamma), \quad \gamma > 2.$$
 (A-31)

As noted previously, $F_{\mathbf{Z}} \simeq 1 - z^{-2/\gamma}$ for z >> 1. Hence, from (A-8), $P_b(\alpha) \simeq \alpha$ for $\alpha << 1$. For $\gamma = 4$, (A-8) and (A-29) give:

$$P_b(\alpha) = \operatorname{erf}\left(\frac{\alpha\sqrt{\pi}}{2}\right) \text{ for } \gamma = 4.$$
 (A-32)

F. The Single-Interferer Case

In the context of this model, the blocking probability for the "single-interferer" case is easily derived by recalling that the average interference source density is $1/\pi$ active transmitters per unit area, and the normalized interference power from a source a distance s from the receiver is $s^{-\gamma}$. Since the number of active transmitters within (normalized) distance s of the receiver is a Poisson-distributed random variable with mean value s^2 , the probability that there are no active transmitters within that distance of the receiver is e^{-s^2} . Thus, since the normalized interference from a single source at distance s is $z = s^{-\gamma}$, the $z = s^{-\gamma}$, the $z = s^{-\gamma}$ for the "single-interferer" case is equal to the probability that there are no interfering transmitters within distance $s = z^{-1/\gamma}$ of the receiver. Hence, for the "single interferer" case,

$$F_Z(z) = \exp\left(-z^{-2/\gamma}\right), \quad z \ge 0, \tag{A-33}$$

and from (A-8), the blocking probability for the single-interference case at the edge of the service area is:

$$P_b(\alpha) = 1 - e^{-\alpha} \,. \tag{A-34}$$

Fig. A-1 shows $F_{\mathbf{Z}}(z)$ for $\gamma = 3.0$, 3.5, and 4.0, for both the multiple-interferer and single-interferer cases, and the blocking probability is shown in Fig. 6 in the body of this paper.

Figure A-1. The CDF of the normalized aggregate interference power.